In our modern world, eliminating plastics is inconceivable. Unfortunately, they do have disadvantages, including the formation of CO2 in both production and combustion, depletion of fossil feedstocks, and growth of landfills. In the journal Angewandte Chemie, Russian researchers introduce a new way forward, a polymer made entirely from biomass that can easily and inexpensively be used in 3D printing. Objects produced in this way are of high quality, easily recyclable, and highly solvent-resistant.
Conventional “subtractive” processes involve cutting, sawing, turning, or milling, which results in a great deal of wasted material. In contrast, 3D printing processes are, in principle, waste-free, because they are “additive”: three-dimensional objects are produced in a layer-by-layer application of material. The most common technique is called fused deposition modeling (FDM). In this process, the raw material is squirted through a hot nozzle onto a mobile base and thereby liquefied (extrusion). The printer head produces the programmed form like in a conventional two-dimensional printing process, releasing small amounts of the polymer instead of ink. This is repeated for layer after layer until the desired three-dimensional object is complete. Yet, the polymers used until now have a number of disadvantages that limit their use. Some of the polymers are attacked by organic solvents. Those that withstand the solvents, on the other hand, adhere poorly and shrink on heating, allowing their layers to come apart and causing errors in the printing process. Click Read More below for additional information.